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Abstract

Dynamic equations are developed for rubber viscoelasticity based
upon a stick-slip continuum molecular based model. The model con-
sidered is a continuum simulation of a tube reptation model in which
a chemically cross-linked (CC) system of molecules act as a constraint
box per unit volume for a physically constrained (PC) system of mole-
cules. The CC-system carries along the PC-system during instanta-
neous step deformations. The subsequent relaxation of the PC-system
is determined by the history of the CC-system and thermodynamic
considerations. At the same time the PC-system deformation acts as
an internal variable affecting the relaxation of the CC-system. Mod-
eling of this relaxation process and subsequent employment of energy
density functions constitutes one basis to model viscoelastic effects in
rubber deformations.



1 Introduction

Various molecular and phenomenological models have been developed to
model both small and large deformations in rubber. For a recent review,
see the survey by Johnson [J]. To provide a more accurate and realistic
model of the deformation and relaxation process in rubber molecular the-
ory [S], [T] and continuum mechanics [O], it is useful to integrate various
approaches.

In this paper we use the molecular models of Doi/Edwards [DE] and John-
son/Stacer [JS] to derive a class of nonlinear distributed parameter systems
(partial differential equations) with internal strain dynamics that include the
pseudo-phenomenological models of [BPP], [BPPGY]. These latter models
have provided good agreement with both quasi-static and dynamic data for
rubber in uniaxial tension and in shear.

The dynamic model for rubber viscoelasticity presented here is based on
the continuum simulation [JS] of a tube reptation model considered in [DE].
In [DE] step-strain relaxation of polymers is modeled with constraint (stick-
slip) theory in which PC-molecules deform with CC-molecules during a large
step-strain. Then the PC-molecules contract and creep to return to a low
energy and higher entropy state. As a result, the total energy density at a
constraint strain dissipates in time and a viscoelastic theory results. These
models are based on cross-linking rubber network theories for rubbers and
other polymers [S], [T].

A continuum molecular model of rubber viscoelasticity is proposed in
[JS] and entails consideration of the chemically cross-linked molecules as
providing cells or boxes with entrapped molecular segments. The model
involves placing a unit cell or box at each point of the rubber continuum and
deriving subsequent equations for the associated principal stretches.

2 The Continuum Model of Johnson and Stacer

In this section and the next we summarize the arguments of Johnson and
Stacer in [JS]. Let the CC constraint tube have length L(¢) and the entrapped
PC-molecule have length ¢(¢). The model under consideration assumes that
the length of the CC tube is approximated as a step function of time and
£(0) = L(0). Suppose an instantaneous tensile step-strain deformation at



time of the CC-system results in the PC molecule having length %, and a
model of the PC-molecule returning to its original contour length is given for
t >0 by

0(t) =0(0) + [* — K(O)]e_t/T.
If the instantaneous stretch at a time ¢g for the CC-tube is ALg, and that for
the PC molecule is Afy, and if we relate the stretches in the form 2o = Lo

ALo Lo’
we find the relation y
Aly = (—°> AlLg.

Lo
Then, in the time interval {5 < ¢ < {; we have
KO —(t—to)/T
g(t) = KO + L—OAL()G 5 (1)

where 7 is the relaxation time for the slip motion. Next we suppose that
the CC-box is subjected to further instantaneous tensile step-deformations
of magnitudes AL; at times ¢;, 2 = 1,2,... . Setting { = ¢;, we find

14
g(tl) = go —|— —OALQG_(tl_tO)/T,
Lo

Ll — Lo —|— ALO

For ¢ in the time interval (¢;,1;), we have

) = Lo+ (6 + Aly) — o] e~ Em0)/7

l l

= KO —|— L—(;AL()G_(tl_tO)/T —|— L_IIALI 6_(t_t1)/7—

lo —(t—to)/T b —(t—t1)/7

= KO + L—AL()@ + L—ALle . (2)

0 1
Similarly for ¢, < ¢ < t3 we have
lo —(t—to)/T b —(t—t1)/7 ly —(t—t2)/7
g(t) = EO + —AL()G 0 + —ALle 1 + —ALQG 2 .
Lg Ly L,

Passing to the limit as At; = ¢, — t;_; — 0, we are thus led to the formula

((t) =to+ /0 t ﬁ((‘?) dz—f)e—w—s)/rds




for the length of the PC-molecule at any time ¢ in terms of the previous
lengths [(s), L(s) and the rate of change E(s). In differential form this

becomes
dl I 1 1dL
E‘?‘(F‘Z@)l‘ 3)

3 Strain Energy Density

To use the stick-slip model in continuum simulation of the reptation model
of rubber elasticity one considers a network of cells or boxes in the rubber
continuum with sides Ay, Ay, and A3. The CC-box will have positive strain
energy density We.(Aie, Age, Ase) for all stretches except when Ay, = Ay =
Aze = 1. Next, a box for the PC-system with sides parallel to those of
the CC-box is defined by sides Ay, Agp, A3, along with an energy density
WPC()‘U?? )‘2197 )‘3p)-

Stresses are calculated from the strain energy density [VL] by determin-
ing how the energy density function changes with respect to changes in the
stretches or displacements. In the model considered, the strain energy density
of the rubber continuum is assumed to have the form

W = Wi+ Wy
— ch()\lca)\Qca)‘Sc) + Wc()‘lpv)‘Zpa)‘?)p)' (4)

To find the stresses at a generic point of the rubber continuum one must
determine how W changes with respect to stretches of the CC-system. The
stretches of the PC-boxes are then treated as internal variables depending
on the stretches of the CC-system.

The Cauchy stress in the principal direction e;, where e; 1s a unit vector
in the z; direction, is given by

ow

Jc

P (5)

where P is the hydrostatic stress. If we consider (4) with the );, as internal
variables depending on the A;., (5) becomes



W, 3 OW,. O,
- cc )\'C pc p _P. 6
o, T o o (6)

=1

7']‘:)\

In obtaining (3) we have related the instantaneous tensile step deforma-
tions Aly, ALy at t = 1} according to the formula
AVIR O
ALy, Ly

Using this observation in the analogy of Aly, AL, with principal stretches
Aip, Aic, Tespectively, we may write

a)‘jp Ajp

“p 5.

a/\ic /\ic ! (7)
In the case of tensile deformations, choosing 5 = 1 for the direction of

loading and using (7) and (4) in (6), we have

oW, oW,
7'2:7'3:0:)\266)\ —|—)\2p)\p—P. (8)
2c 2p

With the hydrostatic stress determined from (8), the tensile Cauchy stress
is thus given by

B oW, oW, W, W,
ne (A“ e Aze aAQC) + (A”’ oy Azp ax2p> ‘ )

4 A Dynamic Continuum Model

To demonstrate how the box model detailed above can be applied to the
analysis of rubber undergoing large dynamic tensile strains, we consider the
strain energy function suggested by Johnson and Stacer (based on experi-

mental data of Young and Danik - see [JQYD]) given by

W.. = 105.0(1; —3) +103.0(1y — 3),
W,e = 169.0(1; — 3) +0.0138(1, — 3)* + 7.89(1, — 3)°, (10)

where [ = )\fc + )\%c + )\%C, and [, = )\%c)\%c + )\QCA%C + )‘%c)‘:?ac-

4



We also impose the incompressibility condition A;A; A3 = 1 on the prin-
cipal stretches A.. = (Mg, Aae, Ase) and Aye = (A1p, Agp, Asp)-

From (9) the engineering stress o1 = 71 /A1, is given by

OWee A OWoo Ay OW,e g, OW,,

_ _ 11
a)\lc )\1(: a)\Qc )\lc a)\lp )\lc a)\Zp ( )

where, from (10), we have

01

aVl/cc N )‘2c aI/I/cc
a)‘lc )‘lc a)‘Qc

= 210A;, + 206( A3, 4+ A1A3)

Age

1c

= 210X, 4 206X 05, + 206X A2, —
210A2,  206A\2. 02, 206)\2.)\2%,

(2105 + 206( A7, Aze + A3 Aac))

12
)‘lc )‘10 )‘lc ( )
For the tension in the incompressible CC-system we see that
1
Aoe = Age = .
2c 3c \/)\—lc
Then, from (12), we can compute
8Vl/cc )‘2c aVl/cc .
a)‘L: )‘lc a)‘Qc B
210 206
210A 1. + 206 — —— — ——. (13)
)‘lc )‘lc

Next we deal with the PC-molecules and find

Wy = 169.0 (X2, + X2, + A2, —3) +0.0318 (A2, + 23, + A2, - 3)" +
7.80 (N2 \3, + A20%, + A3 02, —3)° (14)

Using the relationship
1

i

)\Qp - )‘3]? -



for tension, we obtain from (14)

My Woe Ay Wy
Ae OMp Ao Ohyp
1 1 (., 1
338.0 4 0.0552 [ 2\, + — — 3 M)+ (15)
A e Ay

Letting u, represent the deformation of the CC-box we have

)‘lc = 14 azuc
)\1_62 1 —20,u,
M2 o~ 1 - 30,u.

%

while Ay =1+ Opuy.

Then

aI/I/cc )‘20 @ch

_ A% ~ 210(1 4 dpue) + 206 — 210(1 — 20, u,
e M. Ohg 0(1 4 pu,) + 206 — 210(1 — 20, u.)

—206(1 — 30, u,) (16)
— 12489,u.. (17)

Let u, represent the deformation of the PC-box. Then, proceeding as
above

My Wy Aoy O,

Ae OX1p  Aip OAgy

Thus, using (11) we obtain the engineering stress approximation

~ 1014(1 — Opu.)Opuy. (18)

o ~ 12480,u. + 1014(1 — Jyu.)0,u,
(1248 — 10140,1,) Dy + 10140, 1, (19)

In (3) taking A1,(2) for £(t), A.(t) for L(t) and using Iy = 1(0) = A,(0) =1,
we find



T )‘lc dt
Using the definitions Ay, = 1 + d,up, A = 1 4 Jpu. in (20) we have

(20)

dv, 1 1 1 d\.
dit T 1p

D g om) = 17— 1 — (14 00 2% V1 4 o) (21)
oo ) =T ! o) 910w =te):

In terms of the infintesimal strains 1 = d,u, for the PC system and ¢ = d,u.
for the CC system, we have

é1+ e =714+ e1)/(1 +¢). (22)

If we use the approximation (1+¢)™! & 1—e+. .., (22) provides a relationship
for “internal dynamics”

Tél—|-€1 :T€(1+€1)(1—€) (23)
Ignoring the terms éeqe in (23), we obtain a further approximation of the
internal dynamics given by
. 1 L
51—|—;51:5—|—5[51—5]. (24)

We remark that in integrated form the equation (24) can be written (using
an integration by parts after integration)

1 7t t
e1(t) = E(t)—g(())e—t/ﬂ'__/ 6(S)e—(t—s)/fals_l_/ [e1(s) — &(s)] é(s)e—(t—s)/ﬂ'ds.
T JO 0
(25)
In terms of the deformations 9, u,, d,u,. this is the same as
1 gt
ag;.up = @Iuc — —/ aIuC(S7$)€_(t_S)/TdS
T Jo
t 2
+/g [Oup(s, z) — azuc(s,l‘)]%e_(t_s)ﬁds
By (0,2)e ", (26)



We next consider the longitudinal vibration of a rubber rod with (unde-
formed) cross-sectional area A, and mass density p. Using (19) we write the
equation of motion (recall that S = A.o is the engineering stress resultant -

see (2.1) of [BPPGY])

pAC@tzuc — 0z[Ac(1248 — 10140, up ) Opi] — 0(1014A.0,u,) = q, (27)

where ¢ is the applied load (in force/unit length) and this equation must be
solved with (26) (or equivalently (22)), or one of its approximations (23) or
(24) to provide a defining coupling for d,u, and J,u..

In summary, the full nonlinear model we have derived for the CC-PC
molecular system in tensile deformations for a rod have the form

pOiu. — dy0(e,e1) = qf Ae (28)
o(c,e1) = (1248 — 1014e;)e + 1014e, (29)
mé1+ e =71E(14+e1)/(1 +¢) (30)

with ¢ = dyu., &1 = dyu, and ¢ the applied load (in linear force density).
We remark that the system (27), (23) can be viewed as a member of a
class of systems similar to those treated in [ABP] and the methods presented
there can be used to guarantee well-posedness (existence and uniqueness) of
the corresponding variational forms of this system. The models treated in
[ABP] can be properly viewed as generalizations of (27), (23) that permit
nonlinear instantaneous elastic responses as well as other refinements.

5 Qualitative Analysis

In this section we turn to a brief discussion of some of the qualitative prop-
erties of the model derived in the previous section. We first linearize (29) to
obtain

or(e,€) = 1248¢ 4 1014¢;. (31)

We use the linearized version of (30) - essentially (24) in which we ignore the
term £(eq — ¢) - given by



él + —&1 = E.
T
Integrating and using £(0) = d,u.(0,z) = 0, we obtain
¢
ex(t) = e(t) — - / e(s)e~=)/7ds.
7 Jo

This results in the linearized system

10

T

pdfu, — 22620%u. +

Making the change of dependent variable given by

2262 1014 ¢
v = U, — / UC(S, I)e—(t—s)/ﬂ'ds’
p pT 0
we obtain
n 1014 1248 2262
YT o062 T 2262720 p
1248 t 1
+(22627)2/0 ez () (v, + —v)ds = f,
where
202
= pzAcq'

14 rt
/ DPuc(s, )e I 7ds = g/ A..
0

(35)

(36)

(37)

Next consider the standard Sturm-Liouville problem resulting from sep-
aration of variables in systems such as equation (36). The generic problem

is given by

_y/l _ Ay — 0
y(a) = hoy'(a) = 0,ho >0
y(b) + hay'(b) = 0,hy >0,

For this problem it is known [CL] that there is a sequence of eigenvalues
0 < A < Aol < Ay < ... /" oo and corresponding complete family of

orthonormal eigenfunctions @1, 02, ..., @u, .. ..



From this one is led to consider a solution of (36) in the form

v(t,z) = i vn(t)on(x). (40)

n=1

Also expanding the forcing function
ft,z) =3 falt)en(@),
n=1

we formally obtain from (36) the equations

e A0 (200 s
Un Un - n
22627 ) 22627
1248 \2 [t _ ious 1
—_— — 35657 (t=5) (7 _ —
o) [ e (uls) + —oals))ds = fu(t). (41)
Letting
124 2 i 1248 1
wa(l) = (226—;) [ e HED 5, (5) + ~on(s))ds (42)
we obtain,
, 1248 \? 1 1248
tn(i) = (22627) (8n(t) + Zoa(t)) = o5, 0n(l): (43)

We write (41) as first order vector systems by defining new variables

ui(t) = va(l),
up(t) = oa(l),
ug(t) = wn(l), (44)
P 1248
22627
22
A, — 62 . 1248 ‘
p 226272

Then, from (41) we have the equivalent systems

0 10 uy 0
e N I I S A BT
£ P —d uf 0

10




Letting

0 1 0
Av=| =B 3 —1 . (46)
£ ¢ -d

we find

1014 1014
I_A| = (3 <— d) 2 (—d pe An)
< = Ot lgee T9) ¢+ (gt td +20)¢

2

d
T

The Routh-Hurwitz Theorem [G] tells us that the roots of the polynomial
equation
z3—|—a122—|—a22—|—a3:0

have negative real parts if the following conditions are met

(i) a1 >0

>0

(ii)

Gy as
1 «a

2
(iii) a3 > 0.

Thus, the roots of |(I — A, | = 0 have negative real parts if

1014_|_d And—|—§

226271

1 1014d—|—d2‘|‘An

22621

> 0. (48)

Thus, the eigenvalues of A, have negative real parts if

1014 2 1014 d?
d d — A, — — . 4
(22627’ ) + 22621 T >0 ( 9)

Now, recalling that

1248
d —
22621
2262\, 1248
A, = - ,
p 226272

11



we find that simple calculations reveal that inequality (49) is equivalent to
An, > 0. (50)

Since condition (50) holds for the eigenvalues of (38),(39), we see that the
eigenvalues of A, have negative real part and hence, the zero solution of
(36) with f = 0 is asymptotically stable. That is, all modes of (36) are
exponentially damped.

From (42), (44), (45), and (46) we have that the temporal coefficients of
(40) satisfy

vn(t) v (0) . 0
i t)) — et [ 0,00) | + /0 =94 [ ps) |ds,  (51)
nlt

where for each n

g <

?

6 Vibration of a Rubber Rod with a Tip Mass

In this section we consider the Lagrange formulation for longitudinal vibra-
tions of a rubber rod fixed at * = 0 with a tip mass at * = b. For this we
return to the linearized equation (34), set ¢ = 0 and adjoin the boundary
condition

0%u,

at?
where M is the tip mass, g the gravitational constant, F' is the force applied
to the tip mass, and S = A.oy, is the internal (engineering) linearized stress
resultant given by, in this case,

M——(t,b) = =Sl + F(t) + Mg, (52)

S = 2262A.0,u, —

1014A, rt
0 / Oy, :z:)e_(t_s)/Tds. (53)
0

T

Using (35) we obtain
S = pA.0yv, (54)

12



and from (34)
1

oA
For the problem of the vibration of a rod with a tip mass, as indicated in the
first paragraph above, we have ¢ = 0. Thus from (55) we have

afuc = vy + (55)

@fuc = Vpy. (56)
Moreover from (52), (54) and (56) we have
Muv,,(1,0) = —pAcv.(t,0)+ F(t)+ Mg. (57)

Formally employing the Sturm-Liouville theory and series solution from the
previous section in (57), we have

> [—Mknvn(b) - pAchilson(b)] va(t) = F(1) + My. (58)

n

We may then formally write

[e.e]

F(t)+ Mg =3 (F(t)+ Mg, n)¢n, (59)

n=1

where (,) is the Ly—inner-product. Then, using (58) and (59), and the fact
that, under appropriate regularity assumptions, the series in (59) converges
pointwise for every z in (0, b), we have

(—ar, - hilpAc) va(t) = (F(£) + Mg, ) (60)
va(t) = ﬂgjiﬁ ’:Zf. (61)

Thus,
z D Mg on) (o) (62)

M)\ — —,OAC

We have used formal arguments with (57) and (58), enabling us to write
(61) for v,(t), and thus (62) for v(t,z). However, having this form for v (¢, z),

13



we can invert our arguments to give a rigorous development for this rep-
resentation (62). Specifically, using known facts about completeness of the
eigenfunctions of Sturm-Liouville problems and convergence properties of ex-
pansions in terms of thes eigenfunctions we can establish (62) with complete
rigor. Indeed, taking @ = 0, ho = 0 in (38), we can readily compute the
eigenvalues and eigenfunctions and validate our formal steps.

Returning to (35) we can solve for u. giving the displacement of the

rubber rod. Thus,

1248 1248 4

1
— 2262 (t=s) — 22627
u(t, x) 5960 / e~ <vs + Tv) ds + e~ u.(0, )

1014 :
- 22%26 H0(0,9) + 55 22([3)27/ ez (o (s, 2)ds
—1248

+emer 'y (0, ).

Thus, using (62) we have

P 1248 4 0) + Mg gﬁn>
(1t = — e 22627 N
1014 p gt e, IS (F(s) + Mg, n)
saans (15 n d
T 9262 22627/ < 2_:1 —MX, - EpAT (w)ds
+ e —asear by (0, z). (63)

We see that (63) is an explicit formula for the displacement of the rubber
rod. If
|F(s)] et < Cle™ e > 0,

we see from (63) that, asymptotically, only the weight of the tip mass deter-
mines the displacement of the rod.

7 Conclusion

We have presented a dynamic simulation of rubber viscoelasticity based on
reptation models. Deformed molecular chains or segments entrapped between
cross-linked molecules or molecular chains tend to return to their positions
prior to deformation. This is due to the fact that their original positions

14



are positions of lower energy and higher entropy. However, due to the phys-
ical and electrostatic barriers created as a result of new configurations and
conformations the entrapped and strained molecules only creep to their orig-
inal confirmation. The model presented adheres to these observations and
also points out the interaction of density and relaxation time on the creep
behaviour. These models can be related in a direct manner to previously
derived (pseudo-phenomenological) models based on data from quasi-static
and dynamic experiments with rubber rods in uniaxial tension and in shear.
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